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What is Dust?

▪ a few molecules to ~100 μm
▪ AGB Atmospheres

– cool, extended envelope
– Stellar wind: dust -> ISM

▪ Supernova Outflows
– ejecta expands and cools, dust grains nucleate

▪ Formation in Cold ISM
– grains can form and grow on existing grains

▪ Not sure what fraction of dust from each one
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Why Care about Dust?
● Ubiquitous
● Absorbs and re-emits light in longer wavelengths
● Seed for more complicated molecules
● Enriches ISM, proto-galaxies/stars
● Vital to early stellar and galactic formation and evolution
● Pre-Solar grains: isotopic signature of stars + fusion 

processes
● Molecular lines: composition of object and underlying 

physics
● Multi-Messenger signal

4



Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Core Collapse Supernovae (CCSNe)
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This Project’s Goal

● How initial CCSNe parameters (explosion energy, 
type, progenitor mass, abundances, etc.) affect the 
amount, type, and size of dust grains produced
○ Gain insight into the Supernova engine

● What fraction of dust is produced in CCSNe?
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Gas Chemistry (Sluder et al. 2018)

● Ion recombination occurs. Molecules form from gas-phase reactions as 
the material cools.

● Material condenses out of the gas phase onto the outside of the dust 
grain

● For reaction, the number density of the species change depending on 
the reaction’s rate coefficient and the number density of the reactant. 
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Formation of Dust - Key Species

● Nucleation rate
○ governed by key species

■ the reaction rate is 
much larger than the 
decay rate

■ species with the least 
collisional frequency, 
controls nucleation and 
growth

Nozawa et al. 2003 9
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● Growth (key species)
○ material collides and sticks to the 

grain
○ once the key species is used up, 

reaction stops
○ abundance of key species is 

determined by a system of coupled 
nonlinear ODEs

Dust Growth via grain nucleation

K0: grain number density, K1: average radius, K2: 
average surface area, K3: key species depletion

10
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CCSNe Models

● Models (Fryer et al. 2018)
○ Progenitor mass: 15, 20, 25 M

☉
○ Explosion energy: 0.5 - 125 foe

■ Sudden energy injection from convective 
engine

■ Prolonged energy injection from 
magnetor or fallback accretion

○ Unmixed ejecta: No Mixing!
○ 1-D: assumes spherical symmetry
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Hydrocode

● 1-D Lagrangian: Mass-centered mesh
● Remove compact core 
● Add thermal stellar wind profile onto the stellar 

surface
● Evolve ejecta out to 1157 days

○ Allows for cooling and expansion of ejecta to values 
agreable to dust formation

12



Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Code
● nuDust: nucleating dust code in python
● Takes in composition and hydrodynamical profiles
● Pre-formation of CO and SiO gas phase molecules
● Solves system of coupled nonlinear ODEs for all grain 

species simultaneously
○ LSODA integrator

■ switches between the nonstiff Adams method and the stiff BDF method

● Numba for just-in-time (JIT) compilation to increase 
efficiency and optimization

● Parallelization: multiprocessing library
13
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 Hydro Results
15 SM, 1.69 Foe
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Dust Formation
15 SM, 2.47 Foe 20 SM, 2.85 Foe
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Dust Formation
15 SM, 2.47 Foe 20 SM, 2.85 Foe
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Formation Time

17

M
du

st
 (M

⊙
)

15 M
⊙

20 M
⊙

25 M
⊙



Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Average Grain Size
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Dust Mass
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Future Work
● Include more physics

○ Shock destruction, gas chemistry, radioactive decay, mixing,etc.

● Hydrocode in 2-D and 3-D
● Code performance testing + optimization
● Produce Spectra + Light Curves

○ Look for impacts of grains on spectral lines

● Compare dust and spectra with Observations
○ SN IIb?
○ Identify obs. object’s characteristics from dust
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Conclusions
● How do CCSNe conditions affect dust production?

○ Dust formation occurs earlier in high energy explosions
■ Ejecta expands/cools faster

○ Larger grains form in low energy explosions
■ expands/cools slower--longer growth time period

○ Bulk formation of carbon occurs earlier than silicates
○ Higher explosion energies produce more dust

● How much dust is produced in CCSNe?
○ 10-1-10-5 M

⊙
 dust: upper bound

■ 10-1-10-2 M
⊙
 most common
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Backups
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Gas Grain Interactions

● Adsorption
○ gas-phase species sticks 

to the grain surface

● Desorption
○ surface species break away into 

the gas-phase
○ thermal (Ed = desorption E, 𝜈= vibrational 

frequency)

○ non-thermal
■ cosmic ray ionization rate
■ fraction of time T = 70 K
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Sputtering

● Chemical: incoming gas or reactive ion interacts 
with the grain’s surface forming an unstable 
compound
○ the instabilities cause material to sputter off 

the grain’s surface
○ occurs at low energies

● Physical: kinetic energy from the colliding 
ion/particle is transferred to the grain
○ with enough energy to overcome surface 

binding forces, material sputters off the grain
○ occurs at high energies
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Sputtering Yield

● The amount of sputtered 
atoms per ion.

● Depends on the nuclear 
stopping cross section, 
surface binding energy, the 
threshold energy (min KE), 
and the energy of the 
incoming particle.
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Grain Erosion Rate
● Non-thermal sputtering: non-thermal 

sputtering erodes a hypersonic grain

● Thermal sputtering: the grain moves with 
the shock and collide with the ionized gas
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Dust Destruction
15 SM, 2.63 Foe, C grains

No shock Shock Destruction
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Scaling up and model complexity

CCSNe are 3-D, dust production 
is as well
Extend physics model (gas 
chemistry, shock destruction, 
radioactive decay, etc)
Scaling up and increasing 
complexity requires more efficient 
code
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Gas-Phase Depletion

▪ Heavier elements 
condense out at 
higher 
temperatures

▪ They aren’t as 
susceptible to 
sputtering

▪ Environment 
affects exact trend 
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Complex Molecules

▪ In the ISM
– low number density, high KE, and high 

repulsion between dipoles
▪ You need a seed nucleus: dust grains
▪ Single atoms bond to the grain, the grain 

absorbs excess energy, through quantum 
tunneling the atoms migrate on the surface 
and bond.
– Repulsion energy for H, 19.4 eV
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